
Computational Visual Media
https://doi.org/10.1007/s41095-021-0266-0 Vol. 9, No. 1, March 2023, 177–194

Research Article

AR assistance for efficient dynamic target search

Zixiang Zhao1, Jian Wu1, and Lili Wang1 (�)

c© The Author(s) 2022.

Abstract When searching for a dynamic target in an
unknown real world scene, search efficiency is greatly
reduced if users lack information about the spatial
structure of the scene. Most target search studies,
especially in robotics, focus on determining either the
shortest path when the target’s position is known, or a
strategy to find the target as quickly as possible when
the target’s position is unknown. However, the target’s
position is often known intermittently in the real world,
e.g., in the case of using surveillance cameras. Our goal
is to help user find a dynamic target efficiently in the
real world when the target’s position is intermittently
known. In order to achieve this purpose, we have
designed an AR guidance assistance system to provide
optimal current directional guidance to users, based
on searching a prediction graph. We assume that
a certain number of depth cameras are fixed in a
real scene to obtain dynamic target’s position. The
system automatically analyzes all possible meetings
between the user and the target, and generates optimal
directional guidance to help the user catch up with the
target. A user study was used to evaluate our method,
and its results showed that compared to free search and
a top-view method, our method significantly improves
target search efficiency.

Keywords augmented reality (AR); search; guidance

1 Introduction

Guided navigation in real world indoor environment is
an essential problem for many applications. Typically,
the shortest path will be calculated to guide the user
to a target’s position. When the target is moving, a

1 State Key Laboratory of Virtual Reality Technology and
Systems, School of Computer Science and Engineering,
Beihang University, Beijing, China. E-mail: Z. Zhao,
zhaozixiang@buaa.edu.cn; J. Wu, lanayawj@buaa.edu.cn;
L. Wang, wanglily@buaa.edu.cn (�).

Manuscript received: 2021-07-28; accepted: 2021-12-21

simple shortest path algorithm may not work well,
and the problem is even more difficult when the
target’s position is only intermittently known. The
consequent dynamic target search task is tricky.

Much work has considered improving the efficiency
of the search. Specially designed scenes integrating
some salient features [1, 2] or preset landmarks [3, 4]
may be used to improve navigation efficiency. However,
complex preprocessing and lack of robustness make
it difficult to use these methods in general scenarios.
Some applications offer 2D or 3D maps of the entire
scene to the users and let them decide where to search
for the target [5, 6], while trail methods highlight
the visited parts of the environment or draw users’
footprints to help them navigate more efficiently [7, 8].
Both map and trail method require users to switch
from a first-person perspective to a third-person
perspective to locate themselves and the target, which
interrupts visual continuity of the 3D scene, leading
to higher time costs and task load. The guiding tour
method guides users to important positions, using
some automatically computed paths [9, 10]. Such
work analyzes only the user’s current position and
scene structure, and is unsuitable for the dynamic
target search task.

When searching for a dynamic target in a real
world scene, using fixed surveillance cameras, the
target’s position can only be acquired intermittently.
The resulting search efficiency is low for two reasons.
Firstly, due to complex occlusions, users cannot grasp
the global structure of the entire scene and their own
position. Secondly, if users do not know the changing
position of the moving target, it is difficult to search
for such dynamic objects systematically. Even when a
scene map and extra fixed surveillance camera views
are provided to them, it is still hard for users to find
an efficient route to the target, especially when they
are not familiar with the scene.

177



178 Z. Zhao, J. Wu, L. Wang

In this paper, we design an augmented reality (AR)
guidance assistance system based on a prediction
graph search (PGS) algorithm to help users efficiently
find dynamic uncontrolled individual targets (see
Fig. 1). Unlike a simple shortest path method, we
provide an optimized current walking direction to
guide users to places where they are more likely
to find the target. Recently, depth cameras have
become widely used in dynamic target tracking as no
additional sensors are required to acquire the target.
We assume that a certain number of depth cameras
have been positioned, allowing acquisition of the
dynamic object’s position and motion by analyzing
the depth information (see Fig. 1(b)). The problem
of covering a bounded environment with the minimal
number of cameras is NP-hard; we do not discuss this

problem in our paper. Using the acquired target
information, our method predicts probabilities of
future target’s positions using a prediction graph
search algorithm. Then, for every allowable walking
direction, a user search process is conducted to
estimate possible meeting positions and probabilities.
Finally, meeting probabilities are accumulated in each
direction, and the one with maximum probability
is used to determine guidance direction which is
displayed in a HoloLens to assist the user searching
for the targets (see Fig. 1(c)).

We have tested our AR guidance assistance method
in a user study with 16 participants, who tried to find
a moving person in three different scenes. The study
has three conditions: control condition one (CC1) is
free search with no assistance, control condition two

Fig. 1 (a) Floor plan of a building; the user (blue square) searches for a moving target (red dot) in a circular corridor. The target is captured
by multiple depth cameras (gray triangles). The red dotted line shows the target’s path as predicted by our method, the red asterisk indicates
the predicted meeting position, the blue dash-dotted line shows the user’s optimal path calculated by our method, and the green line is the
current shortest path from the user to the target. (b) Target depth image captured by the depth camera at the bottom left of (a); the target’s
position marked with a red dot. (c) Our AR assistant interface as displayed on the Microsoft HoloLens, which efficiently guides the user to the
moving target.



AR assistance for efficient dynamic target search 179

(CC2) uses the conventional approach of displaying a
top view map with target’s position information, and
the experimental condition (EC): our method with
PGS assistance. The results show that participants
using our method found the target significantly faster
than under the other two conditions (CC1 and CC2).
The experimental condition has significantly lower task
load scores than the control conditions, and significantly
higher usability scores, in our questionnaire.

In summary, the contributions of our paper are as
follows:
• an AR search assistant system using a HoloLens

and several Kinect cameras to help users efficiently
search for dynamic targets whose movement
information is incomplete or intermittent,

• a PGS based dynamic target’s position prediction
algorithm, used in our search system to help
optimize the guidance direction, and

• a test of the efficiency of our method on dynamic
target searching tasks using three different scenes,
the result being that, compared to free-walking
and a top-view method, our method shows a
significant improvement in search efficiency.

2 Related work

2.1 AR guidance

Recently, augmented reality (AR) has been applied
to many real world interactive applications with
excellent results. Some researchers use deep lear-
ning methods for virtual content creation and
exploration to improve immersion, interactivity, and
intelligence [11]. Numerous studies have shown that
AR can improve the efficiency of people performing
tasks in the real world, such as maintenance, repair,
and operation of complex equipment. Using AR
systems for maintenance and assembly tasks can
improve performance, reduce task time [12] and
number of errors [13]. Researchers have used virtual
arrows to demonstrate necessary actions in a robot
assembly application [14, 15]. Compared to a
non-AR system, users of the AR system showed
significantly faster speed in locating important items
and significantly fewer head movements. In terms
of user acceptance, Syberfeldt et al. [16] suggested
that AR is most beneficial for tasks that are complex
enough to make the AR system worthwhile to the
user. The researchers divided the steps involved in

creating or maintaining a task into two categories:
cognitive and psychomotor [17]. Cognitive activities
include directing attention and associating commands
with the physical task environment. Psychomotor
activities include adjustment and other forms of
physical manipulation. AR visualization has been
studied to guide and support both types of tasks.

Common localization tasks place virtual icons or
text labels on the physical object to be located [18].
If the enhancement is outside the field of view, it
is helpful to provide an interface prompt to direct
the user’s attention to the position of the target
component. To do this, Biocca et al. [19] developed
the idea of the attention funnel, similar to tunnel-in-
the-sky aviation cockpit head-up displays. This allows
the user to notice objects that are completely invisible
(including behind them), or that are obscured by
other objects or walls. Schwerdtfeger et al. [20]
compared several guides, including an attention
funnel, 3D arrows, and compass-like 2D arrows. They
suggested that the attention funnel should fade away
as the user’s gaze approaches the target so as not to
block it.

Static arrows are used to point the user in the
direction of the target in many methods. To guide
the user, small arrows may be used to the upper
right of known position markers in the room [21].
A solution with more precise tracking and thus
more flexibility of guidance is proposed in Ref. [22],
based on WiFi triangulation. The user interface
for this work displays a 3D arrow at a fixed point
on the screen. The red arrow rotates according
to the relationship between the direction of the
phone and the target’s positions. Mulloni et al. [23]
focused on the user interface design and information
presented to the user. In addition to arrows, they also
showed walking instructions, target steps, and turn
information. Kim and Jun [24] linked the concepts
of AR and indoor navigation and adopted a self-
developed tracking algorithm. While tracking is based
on markers and image sequence matching, which
allows 3D presentation of AR data, users can only do
so under the guidance of a 2D miniature map in the
upper left corner of the AR display.

In terms of path guiding, many AR applications
calculate the path between any pair of connected
positions based on a building graph using some
shortest path algorithm, e.g., Dijkstra’s algorithm [23,



180 Z. Zhao, J. Wu, L. Wang

25, 26]. Such modules can dynamically recalculate
the path to any target destination whenever the user
reaches an arbitrary info point. However, when it
comes to a dynamic target, the shortest path is no
longer the optimal path, since the meeting position
will not be the current target’s position. To solve
the dynamic target search problem, reliable target
movement prediction is indispensable.

2.2 Probabilistic search

In navigation or guidance systems, target positioning
is a major problem. GPS is already widely used
outdoors, but buildings and walls can block satellite
signals, making it inadequate for indoor positioning
and navigation systems [27]. Early indoor navigation
systems used sensors, consisting of a transmitter
and a receiver, for tracking and positioning [28–30].
Either the transmitter or receiver can be fixed, while
the other is on the moving user. Similarly, recent
indoor navigation systems use mobile phones for
positioning and navigation [31, 32]. Some studies use
image information as markers, making it possible to
integrate visual features of the environment without
the need to place reference markers on walls or
floors [21, 33].

In a guidance system, under normal circumstances,
there is no position sensor installed on the target,
and in general, the target’s position is acquired by
sensors, e.g., surveillance cameras, distributed in the
real world environment. The problem of positioning
a minimal set of fixed sensors in a known bounded
environment in order to cover the whole area has been
proven to be NP-hard in its general form [34]. Even
if the number of sensors is predetermined, finding
their optimal positions is still very complicated. In
this article, we manually placed several Kinect DK
cameras to obtain depth information, and used a
body tracking application to identify the position of
the target. The widespread use of depth cameras is
a future development trend.

In robotics search tasks, the robot typically
analyzes its environment and its own state in order
to move sensors to obtain further useful information
under certain constraints [35]. There is often sig-
nificant uncertainty about the characteristics of
the target, such as its position, direction, intent,
and possibly even its existence. In this uncertain
environment, most robotics target search research
aims to optimize the trajectory of a given searcher so

as to maximize the probability of detecting the target;
the searcher is subject to certain constraints [36]. An
effective planning method is needed to apply search
theory to practical search tasks. Sato and Royset [37]
proposed the optimal search path planning problem
under resource constraints. In this paper, we assume
that users will not become fatigued in the search
process, allowing this paper to focus on the accuracy
of navigation without considering how to allocate
limited resources.

Assuming that the target moves independently
of the searcher, the target model consists of a set
of possible target tracks, each associated with a
probability of the target taking that track. The
number of possible tracks grows exponentially in time
and space [38, 39]. Initiated by Koopman [40], several
branch and bound methods have been developed, e.g.,
Martins [41] using a mean bound, Lau et al. [42]
using a discounted mean bound, and Sato [43] using
a static bound. Morin et al. [44] introduced a mixed-
integer linear program with visibility constraint, in
which agents are allowed to observe adjacent cells.
Other research assumes that target moves to one
of the cells adjacent to the current cell with equal
probability [45, 46]. Firstly, however, these searches
all consider detecting objects moving between ideal
finite units in discrete time according to a Markov
process. We solve the problem of searching for a
walking target in a real corridor scene. Secondly,
these methods do not dynamically update information
about the target object or update the transfer
probabilities according to the position of the target
while going from the unknown target’s position to
the discovery of the target. Our method is that
target object information is used to update the search
with variable transition probabilities for the target’s
position over time.

In a cooperative system with multiple search teams,
some strategies solve an overall optimization problem
for all teams [39, 47], while some strategies exchange
predicted observations on the optimized search path
between platforms [48, 49]. As this paper does
not realize a multi-camera and multi-target tracking
system, and for the sake of user safety, this paper
focuses on how to provide reliable direction indication
for users in the task of seeking a single target, rather
than a multi-user system. In the pursuit mission, the
target may be antagonistic. As for adversarial pursuit-
evasion games, if the user and the target have equal



AR assistance for efficient dynamic target search 181

maximum speeds, a single pursuer cannot capture
an evader in fully connected maps. Bhattacharya
and Hutchinson [50] examined the presence of Nash
equilibria for the case of a single pursuer maintaining
sight of an evader with bounded speed. They
presented necessary and sufficient conditions for cases
in which the target can escape the pursuer. These
methods provide strategies for continuous tracking
in surveillance applications. However, few algorithms
for maintaining visibility have been implemented on
real systems. For the above reasons and for safety
reasons, we assume that the target does not the avoid
user.

Most motion planning either considers how to
search for the target object when user does not
know the target object’s position, or performs path
planning when the target’s position is known. In the
real world, the target often appears intermittently
in a fixed monitoring system. This paper studies
the problem of how to guide the target object
accurately when the position of the target object is
updated intermittently. Therefore, we propose a target
guidance algorithm based on a probabilistic search.

3 Method

3.1 Set up

The user searches in the augmented real world scene
wearing a Microsoft HoloLens display (see Fig. 2(b)),
which is connected to a local host. The user’s
positional information is updated in real time. Several
Kinect depth cameras are distributed in the scene to
capture views and for monitoring (see Fig. 2(a)). The
target (without sensors) moves freely in the scene.
When captured by a Kinect camera, the target’s
position and movement information is updated and
sent to the local host. The real world scene is
pre-calibrated using the fixed Kinect cameras and
HoloLens display. Our method is implemented in a
local area network environment.

When all hardware devices are ready, our AR
guidance assistance method provides the user with
a recommended search direction that is most likely
to meet the target, and presents it in the HoloLens
display (see Fig. 1(c)). The search direction is com-
puted by our prediction graph search algorithm in
real time. The PGS pipeline of the search algorithm
is given in Section 3.2, and then we introduce in detail
two crucial algorithms used in the pipeline, for target

Fig. 2 (a) A Kinect camera and its affiliated devices are placed in the
scene. (b) User wearing a HoloLens display, searching for the target.

prediction and probability calculation in Sections 3.3
and 3.4, respectively.
3.2 PGS pipeline

Our method aims to provide users with continuous
optimized direction guidance towards a dynamic
target in real time. During the whole guidance
process, the target’s position Pt, target’s direction Dt,
target’s velocity vt, and target captured time stamp
ttarget are updated when the target is captured by
the Kinect cameras, or remain unchanged otherwise.
Vt is the average target velocity in the recorded
period, at most 30 s. Meanwhile, the user’s position
Pu, and user’s direction Du are obtained through
the HoloLens API, and the user’s velocity Vu is
calculated in the same way as Vt. We already know
the real world scene layout and all walkable paths are
extracted during a prepossessing stage. These paths
are organized into a graph G, whose nodes represent
corners and edges represent passageways. The total
length of the walkable paths is L. The current system
time stamp is t.

A target prediction state list structure is introduced
to store all predicted target moving paths (Fig. 3).
When the target passes through a passageway, the
related information is packed as a passing state and
stored in the list. The passageway is used as a
key in the hash table to index the corresponding
passing states. One passageway may index multiple
states since the predicted target moving paths can
loop. There is a pointer in the passing state points
to the previous state to indicate where the target
came from. By storing the search paths in this list,



182 Z. Zhao, J. Wu, L. Wang

Fig. 3 Target prediction state list structure used in our PGS
algorithm. The predicted target paths are organized and indexed for
every passageway (a–d). Passing state data (rectangles) are attached
to the corresponding passageways and contain a pointer (purple) to
the previous passing state.

we can traverse all predicted passing states for any
passageway quickly. The best user guidance direction
Dbest is calculated using Algorithm 1 and then shown
on the HoloLens display. Starting from the current
target’s position, all possible paths are found in
graph G, and the probability of each searched node is
recorded in our target prediction state list (lines 1–3).
Subsequently, all possible directions from the user’s
position are searched and the one with maximum
probability is chosen as the guidance direction (lines
4–11).

For simplicity, we set the start position of the search
to the position of the next intersection of the target
P ′

t (lines 1 and 2). Then we start searching from
P ′

t and update the target prediction state list (line
3). When the target arrives at an intersection in the
scene, a node storing this state information about
the target is inserted into the target prediction state

Algorithm 1 Guidance direction determination

Input: target’s position Pt, target’s direction Dt, target’s
velocity vt, target available time stamp ttarget, user’s
position Pu, user’s direction Du, user’s velocity vu, scene
graph G, total length of walkable paths L, current system
time stamp t

Output: guidance direction Dbest
1: P ′

t ← NextIntersection(Pt, Dt, G)
2: St ← (null, P ′

t , ttarget+Distance(P ′
t , Pt)/vt, 1.0)

3: TargetPrediction(St, vt, t + L/vt, G)
4: prbest ← 0; Dbest ← ShortestPathToCenter(Pu, Du)
5: for each P ′

u ∈ AdjacentIntersection(Pu, G) do
6: Su = (null, P ′

u, t + Distance(P ′
u, Pu)/vu, 1.0)

7: pr ← ProbabilityCalculation(Su, vu, t + L/vu, G)
8: if pr > prbest then
9: prbest ← pr; Dbest ← GetDirection(Pu, P ′

u)
10: end if
11: end for
12: return Dbest

list. Each node representing a state consists of four
values: a pointer to its parent node, the target’s
position of the state, the time stamp when the target
passed by, and the probability of going from the root
node to the current node. The root node state St is
initialized with its parent node pointer set to null,
its position is set to P ′

t , the time stamp is set to
ttarget + Distance(P ′

t , Pt)/vt (the current time minus
the time it takes the target to go from P ′

t to Pt) and
the probability is set to 1.0 (line 2). Starting from the
root node, our method constructs the corresponding
target prediction state list by calling function the
TargetPrediction function discussed in Algorithm 2
(line 3). The parameters for this function are the root
node state of the target St, target’s velocity Vt, time
stamp upper bound t + L/vt, and the scene graph G.
The time stamp upper bound limits the maximum
search distance so as to not exceed the total path
length L.

Our method accumulates the probabilities of each
path to its corresponding start direction, and then the
direction with maximum probability prbest is recorded
in Dbest and shown in the HoloLens as the guidance
direction. Both values are initialized before starting
optimization (line 4). Note that Dbest is initialized
to guide the user to take the shortest path to the
center of the scene along the current user’s direction,
unless the current user’s direction leads to a dead
end. Naturally, this initial direction will be returned
if the probability of capturing the target object in
every direction is zero.

Starting from the current user’s position Pu, we
traverse all of its adjacent intersections (line 5).
Then we initialize the user search root node state
Su (line 6), similarly to the target root node St.
Next, the probability of the user meeting the target
using the starting state Su is calculated by the
ProbabilityCalculation function detailed in Algorithm
3 (line 7). If the calculated probability is greater than
the previous best, we update prbest to pr and Dbest
to D (lines 8–10).

Finally, when all possible user’s directions have
been checked, our method returns the estimated best
user walking direction (line 12), which is rendered in
the HoloLens to guide the user to the target efficiently.

3.3 Target prediction
When a target moves freely in a real world scene,
we can only obtain its position when it appears in



AR assistance for efficient dynamic target search 183

some camera view. Simply guiding the user to this
position is futile: the future trajectory of the target is
uncertain, and the target is likely to be far away from
this position before the user arrives. Instead, our
method provides a target prediction algorithm, from
which possible future movements of the target can
be predicted, along with corresponding probabilities.
Subsequently, the most likely search direction to meet
the target can be calculated and provided to the user.

The target prediction algorithm is shown in
Algorithm 2. The inputs to the algorithm are the
current target root node state S, target’s velocity v,
time stamp upper bound tlimit, and scene graph G.
The algorithm searches all predicted possible target
paths and updates them in the target prediction state
list.

The algorithm is based on an iterative depth first
search algorithm and stops when the time stamp
in the current search state exceeds the time stamp
upper bound tlimit, or the probability of the current
state S.pr is less than 0.001 (line 1). We search
all possible adjacent intersections of S.P in G and
get the next node position P ′ (line 2), and then
the corresponding node state S′ of P ′ is updated by
setting its previous state (parent node) to S, setting
its position to P ′, setting its time stamp to S.t plus
the time for the target to move from P to P ′, and
setting its probability to S.pr times the probability
of the target moving in direction D at position S.P

(line 3).
Our target prediction state list is maintained in

a hash table, in which the key is a passageway
represented by a position pair like (S.P , P ′), and
the value is a list of all possible target states that
pass through the passageway (S.P , P ′). As shown

Algorithm 2 Target prediction
Input: target search state S, target’s velocity v, time stamp

upper bound tlimit, scene graph G

1: if S.t > tlimit or S.pr < 0.001 then return
2: for each P ′ ∈ AdjacentIntersection(S.P , G) do
3: S′ ← (S, P ′, S.t + Distance(S.P, P ′)/v,

GetProb(S.P, P ′, G) ∗ S.pr)
4: InsertIntoList(S′, GetStateList(S.P , P ′))
5: if S′.t < GetTime() and KinectVisible(P ′) then
6: continue
7: TargePrediction(S′, v, tlimit, G)
8: end for
9: return

in Algorithm 2 (line 4), S′ is inserted into the list
marked with (S.P , P ′). If the target is captured by
a camera at position P ′ and the predicted state time
is earlier than the current time (line 5), the node is
deleted and the search skipped (line 6). Finally, we
go to deeper branches for the new state S′ (line 7).

In Fig. 4(c), the search paths are shown as a
tree, in which nodes represent corners in the path
and corresponding arrival time, and edges indicate
the probability that the target passes through the
corresponding passageway. For example, the target
(shown as red spot) passes node B at time t = 8 s and
continues moving, arriving at C at time t = 18 s with
probability 0.5. When it arrives C, it may move to D

with local probability of 0.5, so the overall probability
of moving from C to D is 0.25. Note that we assume
that the target never turns back unless it encounters
a dead end.

3.4 Probability calculation

As in target prediction, the probability calculation
process is also based on depth first search. A valid
intersection between the target prediction status
list and the user search path represent possible
interception locations. The probabilities of all these

Fig. 4 A simple corridor scene layout is given (a) with its topological
graph (b). The target prediction process is shown in a tree (c). Search
time and probabilities are attached to nodes and edges of the tree.
(d) shows the predicted user search process and (e) shows the
probability backtracking process. Note that the probability of edge c

is set to 0 as it is invalid (highlighted as a red circle).



184 Z. Zhao, J. Wu, L. Wang

intersection events are accumulated along their
corresponding user’s movement directions, and then
the direction with the maximum probability is set
to the final guidance direction. The probability of
meeting the target is computed using Algorithm 3.
Its inputs are the current user search state Su, defined
in Section 3.2, user’s velocity v, time stamp upper
bound tlimit, and the scene graph G. The output
is the estimated probability of the user meeting the
target face-to-face if starting in state Su.

The stopping criteria for Algorithm 3 are defined
similarly to Algorithm 2 (line 1) and the output
probability is initialized to 0 (line 2). Then, we
traverse all possible adjacent intersections of Su.P ,
get the next intersection P ′, and create the corre-
sponding next user search state S′

u (lines 3 and 4). We
next check the target prediction state list to find all
valid meetings in the passageway P ′ to Su.P , and add
the corresponding probability into the current search
node (lines 5–8). Finally, we set state S′

u as the next
user search state and iterate. The iteratively returned
probability and the current branch probability are
multiplied and added to pr (line 9). An example
of the probability calculation process is shown in
Figs. 4(d) and 4(e). Here, the iterative process
of determining the search path and probability is
similar to that in Algorithm 2. An accompanying
accumulation backtracking process is performed to
calculate the probabilities of all valid meetings and
contributes them to the corresponding user search
starting direction: see Fig. 4(e). Finally, the starting
search direction with maximum probability (0.5 here)

Algorithm 3 Probability calculation
Input: user search state Su, user’s velocity v, time stamp

upper bound tlimit, scene graph G

Output: probability from current user state Su to target
1: if Su.t > tlimit or Su.pr < 0.001 then return 0
2: pr ← 0
3: for each P ′ ∈ AdjacentIntersection(Su.P , G) do
4: S′

u ← (Su, P ′, Su.t + Distance(Su.P, P ′)/v,

GetProb(Su.P, P ′, G) ∗ Su.pr)
5: for S′

t ∈ GetStateList(P ′, Su.P ) do
6: if CheckContributionValidity(S′

u, S′
t) then

7: pr ← pr + GetProb(Su.P , P ′, G) * S′
t.pr

8: end for
9: pr ← pr + GetProb(Su.P, P ′, G) ∗

ProbabilityCalculation(S′
u, v, tlimit, G)

10: end for
11: return pr

is returned as the user guidance direction.
The CheckContributionValidity function is used

in Algorithm 3 to judge whether a meeting will
happen or not. The first consideration is time: if
a meeting occurs in a passageway, there should be
an intersection between the passing time periods of
the user and the target. As shown in Fig. 4(e), the
probability on edge c changed from 1.0 in Fig. 4(d)
to 0, because the time when the user searches from
D to C is t ∈ 5–15 s, while the time period when the
target moves from C to D is t ∈ 18–30 s, so there is
no physical intersection in passageway c. A further
consideration is that there should not be more than
one meeting between the same target and user search
path pair. See Fig. 5, the user and the target will
meet in passageway a and again later in c if they keep
moving along their own paths. Our method discards
c in such cases.

Regarding speed, firstly, when the probability of
reaching an edge in the search process is less than
one in a thousand, we perform a pruning operation,
so the number of edges in the search tree does not
exceed one thousand. Secondly, our target prediction
state list is maintained in a hash table, allowing direct
retrieval when querying. Therefore, the method fully
supports calculation of the guidance direction at 60
frames/s.

Fig. 5 Example of an invalid meeting state in passageway c: the
corresponding paths of the user and the target already have an earlier
intersection in passageway a.

4 User study

4.1 Outline

We have evaluated our guidance method in a
controlled user study of the dynamic person searching
task under one experimental condition (EC) and two



AR assistance for efficient dynamic target search 185

control conditions (CC1, CC2) detailed below. The
mini-map condition is used as the second control
condition because there are many way-finding studies
using maps [5, 51, 52]. Our study is aimed to show
that our guidance method is more efficient, requires
less mental effort, and has better usability.

The three conditions were:
• EC: A series of arrows indicating a moving

direction, calculated by our method, are shown
to guide the user. Users are advised to move in
the direction of the arrows. See Fig. 6(a).

• CC1: No guidance is provided to users. They can
move freely and should try to find the dynamic
target by themselves.

• CC2: A mini top-view map is provided to the
users on the HoloLens screen. The user’s position
and orientation are marked in the map at all time.
The target’s position and movement direction are
displayed in the map by an arrow when captured
by the Kinect cameras. See Fig. 6(b).

4.2 Design

4.2.1 Participants
We recruited 16 participants, 12 males and 4
females, between 20 and 40 years old. Five of our
participants had prior experience with AR appli-
cations. Participants had normal or corrected vision
and none reported preexisting balance disorders.
4.2.2 Implementation
The AR application was developed using Unity
v2019.4 and displayed on a Microsoft HoloLens.
Human motion is captured using a skeleton tracking
technique with the Microsoft Azure Kinect depth
camera. Microsoft provides a skeleton tracking

Fig. 6 (a) First-person view in EC. A series of arrows indicates the
guidance direction provided by our method. (b) First-person view in
CC2. A mini top-view map is provided to show the positions of the
user (blue arrow) and the target (red arrow). The depth cameras are
marked by black triangles.

software development kit (SDK) [53], which was used
to determine the target’s position and movement.
Each Kinect was connected to a laptop computer for
this purpose. A server workstation with 3.6 GHz Intel
i7-9900KF CPU, 32 GB RAM, and an NVIDIA RTX
2080 graphics card received the tracking results, and
ran our method, sending instruction to the HoloLens
50 times/s. The AR content in the HoloLens is
rendered at 60 frames/s for each eye.

We used a HoloLens 2 as the augmented reality
device for reliable tracking of users. Through a one-
time localization, the real world indoor environment
is aligned with our building model.

The optimal number and placement of cameras
were not considered here. This paper aims to
explore whether the search algorithm can accelerate
the search for the target, rather than focusing on
how to place cameras. We manually placed the
cameras in position that covered multiple passa-
geways. Principles followed included trying to put
them at corners instead of the middles of passageways,
and on corners where the target has a high probability
of passing instead of remote ones.
4.2.3 Environments and tasks
Three scenes were used in our user study, which were
designed to explore the influence of different space
dimensions on our method. The walkable regions of
these scenes were initially extracted manually.
• Scene 1. Here, the user needs to search for a

moving person in a hand-built maze which covers
a 6 m × 9 m area (see Fig. 7(a)). Two cameras
are placed in the scene, which has 10 branching
nodes, including right-angled corners that connect
two sections of the passageway.

• Scene 2. This is also a hand-built maze, covering
a 10 m × 16 m area (see Fig. 7(b)). Four cameras
are placed in the scene, which has 18 branching
nodes. It is 3 times the area of Scene 1 and more
complicated.

• Scene 3. The third scene is an indoor corridor.
From real buildings, 2D walkable areas were
extracted from the building plan. The area of
the passageway, including the enclosed area, is
20 m × 64 m (see Fig. 1(a)). It is 23 times as big
as Scene 1, but only has 6 branching nodes—its
structure is relatively simple. Three cameras are
placed in this scene.

There were also two tasks:



186 Z. Zhao, J. Wu, L. Wang

Fig. 7 Top views of (a) Scene 1 and (b) Scene 2. The walkable area
in each lies within the red rectangle. The Kinect cameras’ positions
and orientations are marked with black triangles.

• Task 1. The target person roams freely in the
scene along a random walking route. The user is
asked to meet with the target as soon as possible.
This task adopts a within-subject design, with
each participant serving once in each of three
conditions for each scene. The order of the
conditions of each participant is random for each
scene. We have no requirements for the speed
of users or targets. They walk at normal speed
according to their habits. Sixteen participants
were used in this task. For each participant, the
target person was randomly selected from the
other participants and remained unchanged in all
three conditions of this task. If an experiment
failed, it was repeated. This means that there are
sixteen pieces of data of each condition for each
scene.

• Task 2. The target person is required to walk
along a predefined route in the scene. The user is
asked to meet with the target as soon as possible.
This task adopts a between-subject design. One
participant was randomly selected as the target
and remained unchanged in all experiments of this
task. The other 15 participants were randomly
assigned to one experimental group (EG) and
two control groups (CG1, CG2), each having
5 participants. Each participant served in one
group for each scene. The EG has the same AR

interface as the EC. The two CGs have the
same AR interface as the CCs. Each scene has
three predefined loop paths illustrated in red,
green, purple in Fig. 8. Each group performs
each predefined path for each scene. The starting
positions of the user and the target are marked
in Fig. 8. The target repeatedly walks clockwise
along the route. Each group of each route for
each scene has five pieces of data.

4.3 Procedure

Before experimenting with each scene, we provided
participants with a three-minute tutorial. We showed
users the top view of the scene and let them walk
around the scene to familiarize themselves with it.
Then we showed the user how to control the HoloLens
used in the three conditions. During execution of the
tasks, the system displays different information under

Fig. 8 Scenes 1, 2, and 3 for Task 2 are shown in (a–c) respectively.
Each scene has three predefined loop paths shown in red, green,
purple. The starting positions of target and user are marked as
circle and square respectively. The direction of the target’s movement
is clockwise, as marked by arrows. Targets walk along the path
repeatedly until they meet the user.



AR assistance for efficient dynamic target search 187

different conditions. The user can choose to take a
break after each experiment. Once the user tapped
the start button on the HoloLens screen, the program
drew different prompts on the screen according to the
situation. When the user meets the target, the user
taps the end button in the HoloLens screen to stop
the experiment. Light background music was played
to avoid the influence of the sounds of footsteps.

4.4 Results

We quantified the results of our user study using task
performance metrics and perceptual metrics.
4.4.1 Task performance metrics
The performance was measured with the following
metrics for each task, and for each condition.
• Completion distance: The distance the user

travels to intercept the target, measured in
meters.

• Completion time: Elapsed time to complete the
task, measured in seconds.

• Time in place: The total amount of time the
user stays in place while performing the task,
measured in seconds.

For these three indicators, the smaller the value,
the more effective our method. The best results are
indicated in bold for the three conditions of these
indicators. The performance metrics of Task 1 are
shown in Tables 1, 2, and 3 for details.

Table 1, column three reports the average and
standard deviation of completion distance in Task
1 over all participants, for each scene and each
condition. Column four gives the relative decrease
of the completion distance from CC to EC. Column
five reports the relative difference between the EC

and CC. We use p-value as statistical test and mark
the upper corner of statistical significant results with
an asterisk. We also report Cohen’s d in column six,
along with the conventional effect size quantification
in column seven [54, 55]. The d values were translated
to qualitative effect size estimates according to Huge
(d > 2.0), Very Large (2.0 > d > 1.2), Large
(1.2 > d > 0.8), Medium (0.8 > d > 0.5), Small
(0.5 > d > 0.2), and Very Small (0.2 > d > 0.01).

The results in Table 1 show that, although our
optimization goal is to maximize the probability of
meeting the target, our method can also reduce the

Table 1 Completion distance (m) for Task 1

Condition Avg ± std.dev. (CCi − EC)/CCi p Cohen’s d Effect size

Scene 1
EC 16.1±2.9 — — — —
CC1 23.5±6.1 31.5% < 0.001∗ 1.55 Very Large
CC2 20.1±4.3 20.2% 0.002∗ 1.10 Large

Scene 2
EC 23.8±5.8 — — — —
CC1 38.1±9.0 37.5% < 0.001∗ 1.88 Very Large
CC2 32.7±8.1 27.4% < 0.001∗ 1.27 Very Large

Scene 3
EC 66.3±16 — — — —
CC1 106±27 37.5% < 0.001∗ 1.77 Very Large
CC2 85.2±19 22.2% 0.002∗ 1.05 Large

Table 2 Completion time (s) for Task 1

Condition Avg ± std.dev. (CCi − EC)/CCi p Cohen’s d Effect size

Scene 1
EC 22.6±4.9 — — — —
CC1 34.4±9.6 34.3% < 0.001∗ 1.55 Very Large
CC2 28.9±6.0 21.7% 0.001∗ 1.14 Large

Scene 2
EC 32.0±8.2 — — — —
CC1 52.5±13 39.0% < 0.001∗ 1.87 Very Large
CC2 46.3±9.6 30.8% < 0.001∗ 1.59 Very Large

Scene 3
EC 75.6±22 — — — —
CC1 121±37 37.7% < 0.001∗ 1.49 Very Large
CC2 97.8±30 22.7% 0.013∗ 0.84 Large



188 Z. Zhao, J. Wu, L. Wang

distance that users need to walk to complete the task.
The advantage of EC over the two CCs using this
metric is always statistically significant (i.e., p < 0.05)
and the effect size is mostly Very Large.

Table 2 reports the average and standard deviation
of completion time for Task 1 over all participants,
for each scene and each condition. Both completion
time and completion distance of Task 1 are normally
distributed as confirmed by a Shapiro–Wilk test [56],
so the conditions were compared using ANOVA.
We used a one-way repeated measure ANOVA and
Bonferroni correction for pair-wise comparisons. We
also used a Greenhouse–Geisser adjustment to correct
violations of the spherical hypothesis. The following
are the results of the data analysis.

For all three scenes, participants had the shortest
average of completion time in EC in which the user
walks along the guiding path with higher probability
of catching the target. The advantage of EC over two
CCs on this metric is always statistically significant
(i.e., p < 0.05) and the effect size is mostly Very
Large. The condition which has the longest average
completion time is CC1: in this case the user does
not get any assistance and may walk to useless places
repeatedly.

Table 3 gives the time spent in place. The Shapiro–
Wilk test reveals that this is not normally distributed,
so we performed a statistical analysis of the differences
between EC and CCs using a Wilcoxon signed-rank
test [57]; p values are in column five. Participants had
the shortest average time of staying in place for all
three scenes and there is a statistically significant (i.e.,
p < 0.05) difference between EC and the two CCs.

In EC, when the cameras capture the target,
the best direction for the user to follow can be
immediately calculated and presented, while CC2

requires the user to recognize the target’s position in
the top view map, to switch from the user’s egocentric
perspective to the exocentric perspective provided by
the map, to predict the movement path of the target,
and to plan their own walking path—so the reaction
time increases. Furthermore, when the target has
disappeared from the cameras for a certain period
of time, in EC, the historical data can be used to
calculate the average velocity of the target for path
prediction. However, in CC2, users need to infer the
position of the object from their own memory, which
can sometimes be unreliable. It is hard for them to
deduce the expected position and make the correct
decision.

To further verify the results, we choose three
predefined paths to control the movement of the
target and test the performance of our method.
Table 4 reports the average and the standard
deviation of the completion time for Task 2 for each
scene and each group. Columns three–five report
the completion time for red, green, and blue loop
paths respectively. Column six gives the average
and standard deviation over all three predefined
paths. Column seven gives the relative decrease
of the completion time of Task 2 from CG to
EG. For all three scenes and all three predefined
paths, participants used the shortest average time to
intercept the target in the experimental group EG.
The overall average of completion time in each group
in Task 2 is longer than that in each condition in Task
1, because the red and purple paths require the user
to walk a longer distance around the scene rather
than cutting across the middle of the scene. In Task
2 the average decrease in completion time from CG1
to EG over the three scenes is 33.3%. This average
decrease ratio from CG2 to EG among three scenes is

Table 3 Time (s) that user stays in place for Task 1

Condition Avg ± std.dev. (CCi − EC)/CCi p Cohen’s d Effect size

Scene 1
EC 1.43±0.73 — — — —
CC1 2.12±1.2 32.5% 0.039∗ 0.70 Medium
CC2 2.32±0.98 38.5% 0.003∗ 1.04 Large

Scene 2
EC 2.57±1.0 — — — —
CC1 4.18±1.7 38.5% 0.001∗ 1.16 Large
CC2 4.77±1.7 46.0% < 0.001∗ 1.56 Very Large

Scene 3
EC 3.73±1.2 — — — —
CC1 6.96±2.6 46.4% < 0.001∗ 1.58 Very Large
CC2 7.65±3.1 51.3% < 0.001∗ 1.69 Very Large



AR assistance for efficient dynamic target search 189

Table 4 Completion time (s) for Task 2

Condition
Red path

Avg ± std.dev.
Green path

Avg ± std.dev.
Blue path

Avg ± std.dev.
Overall

Avg ± std.dev.
(CCi − EC)/CCi

Scene 1
EG 24.2±2.6 19.5±1.8 25.1±2.4 23.0±2.3 —
CG1 36.2±5.2 35.7±4.7 37.4±5.9 36.4±5.3 37.0%
CG2 30.4±3.6 26.7±2.8 29.1±3.3 28.8±3.2 20.1%

Scene 2
EG 38.4±4.3 32.3±3.7 34.4±4.0 35.0±4.0 —
CG1 58.2±7.0 51.4±6.3 47.7±6.0 52.4±6.4 33.2%
CG2 51.3±5.3 47.8±4.8 42.2±4.4 47.1±4.8 25.6%

Scene 3
EG 92.1±12 57.5±7.4 110±14 86.5±11 —
CG1 138±23 97.3±16 134±22 123±20 30.1%
CG2 107±14 70.5±8.8 124±16 101±13 14.5%

20.1%, less than that for Task 1 because it is easier for
the user to plan a path using the top-view map when
the target walks around the edge of the scene than
when the target passes through the intersection in the
middle of the scene. In this situation the guidance
path of our method is similar to the path analyzed
by the user through the top-view map, especially
for Scene 3 which has a relatively simple structure.
The results show that compared to free searching
and the top-view method, our method can help users
intercept the target more effectively when the target
moves along various common paths.
4.4.2 Perceptual metrics
We also employed task load and usability ques-
tionnaires to evaluate our method’s practicality.

We measured task load using the Raw Task Load
Index (TLX) questionnaire, a simplified version of the
NASA-TLX questionnaire [58]. The results are given
in Table 5. We averaged the scores of the six Raw
TLX task load questions, which are between 5 and
100, with 5 point increments. The task load values
do not follow a normal distribution, so the differences
were analyzed with a Wilcoxon signed-rank test.

In all three scenarios, the task load of the EC was
smaller than that of the CC. The task load of EC

has no significant difference compared to CC1 and
CC2 for Scene 1, which is the smallest of the three
scenes and users do not need to explore for a long
time.

The task load is significantly higher for CC1
compared to EC for Scene 2 (p = 0.021) and Scene
3 (p = 0.003). Since there is no target information in
CC1, the users need to analyze the scene structure
and search for the target object by themselves, which
takes more effort and increases frustration. In Scene 3,

Table 5 Raw Task Load Index score

Condition Avg ± std.dev. p Cohen’s d Effect size

Scene 1
EC 19.8±3.2 — — —
CC1 21.9±5.8 0.245 0.45 Small
CC2 23.2±6.9 0.087 0.64 Medium

Scene 2
EC 21.3±4.9 — — —
CC1 29.0±9.8 0.021∗ 0.99 Large
CC2 27.4±10 0.076 0.74 Medium

Scene 3
EC 30.3±9.1 — — —
CC1 48.9±20 0.003∗ 1.21 Very Large
CC2 45.8±21 0.015∗ 0.95 Large

there is a statistically significant difference between
EC and CC2 (p = 0.015): the passageway is long, and
the cost of wrong user judgment increases, making
users more cautious and placing them under more
pressure when making judgments. This increases
mental demands and frustration.

Overall, the EC strategy does not bring more load
to users compared to two CCs. The advantage of our
method over the two conventional methods confirms
that users can find the target more easily when using
our AR path guidance assistance.

Each participant was asked to fill out a usability
questionnaire after each condition. It has eight
questions pertaining to the experience of using the
AR assistance. The questions were to be answered
using a numerical score from 1 to 10, and were
Q1. Was the interface confusing?
Q2. Will you be able to use this guidance in the

future?
Q3. Was it convenient to operate the device?
Q4. Was it difficult to utilize the guidance information?
Q5. Do you think others will soon adapt to this

guidance mode?



190 Z. Zhao, J. Wu, L. Wang

Q6. Was the guidance mode reasonable?
Q7. Was the guidance mode tiresome?
Q8. Did the guidance help you find the target

quickly?
Three questions are negative, and five are positive,
to reduce the risk of mechanical answers.

Results for the individual questions as well as the
average over all questions are given in Fig. 9. A
negative score x is replaced by its complement 11−x

so that larger scores are always more favorable. The
scores are not normally distributed and differences
were analyzed with a Wilcoxon signed-rank test;
significant differences are indicated by an asterisk.
Participants indicated that they would like and will
be able to use our AR assistance in the future (Q2).
EC was judged as providing significantly easier to
utilize guidance information than CC1 and CC2 (Q4),
confirming that our path guidance provides intuitive
help when searching for a target. Since EC does
not require the user to think too much, while CC1
does not have any hints that will make the user feel
confused or bored, EC scores significantly higher than
CC1 in Q6 and Q7. CC2 provides users with map
information and partial target information, improving
the user’s participation and reducing anxiety, and
while EC rates higher than CC2 in both scores, the
results are not significant. Participants rate EC as
significantly more useful for guiding them to intercept
the target quickly (Q8). Finally, over all questions,
EC received significantly higher scores than CC1 and
CC2, confirming that participants note the benefits
of using our AR assistance in the target search
task.

5 Conclusions

We have presented a method for improving dynamic
target search efficiency in the real world through PGS
based AR assistance. In essence, our method provides
the user with an optimized instantaneous direction
cue to lead the user in a direction most likely to
intercept the dynamic target. Our method obtains
dynamic target’s positions captured by depth cameras
fixed in the real scene, predicts possible interception
locations, and generates an instantaneous direction to
help users find the dynamic target. We also designed
a user study to evaluate our method. Its results
show that compared to free search and a top-view
method, our method can help users find the dynamic
target more effectively, and significantly reduce task
completion time, walking distance, and time that the
user stays in place. The method also shows an obvious
task load reducing and usability score promoting,
some of the improvements are significant.

One limitation of our method is that if the target
does not appear in any camera for a long time, or
does not move, our method may not work well. In
the worst case, our method may degenerate into a
non-guidance method. One solution is to increase
the number of cameras so that even if the target is
lost from the cameras, we can guide users to search
in a relatively small surveillance blind area. Another
limitation is that Kinect’s recognition distance is
6 m, which limits the use scenario. Huang et al.
[59] provided a practical backend for stereo visual
simultaneous localization and mapping (SLAM) which
can discover individual rigid bodies and compute their

Fig. 9 Usability questionnaire scores, the higher, the better. Significant differences are indicated by asterisks.



AR assistance for efficient dynamic target search 191

motions in dynamic environments; it is not limited to
indoor scenes. Such motion estimation methods can
expand the application scenarios of our paper.

The current work sets the branch probabilities
equally, although the target may be biased when
choosing a branch passageway. In future work,
we hope to combine data-driven trajectory analysis
and attention distribution models into the algorithm
to more accurately predict the likely trajectory of
the target, so that our algorithm can deal with
more complex environments and movement patterns.
Other future work will focus on extending our
method to multiple targets. Since multi-target multi-
camera tracking remains a very complex and difficult
problem [60, 61], we have not yet carried out experiments
with multiple targets. Once there is a lightweight
solution to track and differentiate multiple targets, we
hope to apply our method to multi-target search tasks.

Acknowledgements

We sincerely thank the reviewers for their their
constructive suggestions and comments. This work
was supported by National Key R&D Program
of China (2019YFC1521102) and the National
Natural Science Foundation of China (61932003 and
61772051).

Declaration of competing interest

The authors have no competing interests to declare
that are relevant to the content of this article.

Electronic Supplementary Material

Supplementary material is available in the online
version of this article at https://doi.org/10.1007/
s41095-021-0266-0.

References

[1] Lynch, K. Reconsidering the image of the city. In: Cities
of the Mind. Environment, Development, and Public
Policy. Rodwin, L.; Hollister, R. M. Eds. Springer
Boston MA, 151–161, 1984.

[2] LaViola Jr., J. J.; Kruijff, E.; McMahan, R. P.; Bowman,
D.; Poupyrev, I. P. 3D User Interfaces: Theory and
Practice. Addison-Wesley Professional, 2017.

[3] Pierce, J. S.; Pausch, R. Navigation with place
representations and visible landmarks. In: Proceedings
of the IEEE Virtual Reality, 173–288, 2004.

[4] Steck, S. D.; Mallot, H. A. The role of global and local
landmarks in virtual environment navigation. Presence:
Teleoperators and Virtual Environments Vol. 9, No. 1,
69–83, 2000.

[5] Darken, R. P.; Cevik, H. Map usage in virtual
environments: Orientation issues. Proceedings IEEE
Virtual Reality 133–140, 1999.

[6] Stoakley, R.; Conway, M. J.; Pausch, R. Virtual
reality on a WIM: Interactive worlds in miniature.
In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 265–272, 1995.

[7] Darken, R. P.; Sibert, J. L. A toolset for navigation
in virtual environments. In: Proceedings of the 6th
Annual ACM Symposium on User Interface Software
and Technology, 157–165, 1993.

[8] Grammenos, D.; Filou, M.; Papadakos, P.; Stephanidis,
C. Virtual prints: Leaving trails in virtual environments.
In: Proceedings of the Workshop on Virtual Environ-
ments, 131–138, 2002.

[9] Chittaro, L.; Ranon, R.; Ieronutti, L. Guiding visitors
of Web3D worlds through automatically generated
Tours. In: Proceedings of the 8th International
Conference on 3D Web Technology, 27–38, 2003.

[10] Elmqvist, N.; Tudoreanu, M. E.; Tsigas, P. Tour
generation for exploration of 3D virtual environments.
In: Proceedings of the ACM Symposium on Virtual
Reality Software and Technology, 207–210, 2007.

[11] Wang, M.; Lyu, X. Q.; Li, Y. J.; Zhang, F. L. VR
content creation and exploration with deep learning:
A survey. Computational Visual Media Vol. 6, No. 1,
3–28, 2020.

[12] Henderson, S.; Feiner, S. Exploring the benefits of
augmented reality documentation for maintenance
and repair. IEEE Transactions on Visualization and
Computer Graphics Vol. 17, No. 10, 1355–1368, 2011.

[13] Webel, S.; Bockholt, U.; Engelke, T.; Gavish, N.;
Olbrich, M.; Preusche, C. An augmented reality training
platform for assembly and maintenance skills. Robotics
and Autonomous Systems Vol. 61, No. 4, 398–403, 2013.

[14] Barakonyi, I.; Schmalstieg, D. Ubiquitous animated
agents for augmented reality. In: Proceedings of the
IEEE/ACM International Symposium on Mixed and
Augmented Reality, 145–154, 2006.

[15] Zauner, J.; Haller, M.; Brandl, A.; Hartman, W.
Authoring of a mixed reality assembly instructor for
hierarchical structures. In: Proceedings of the 2nd
IEEE and ACM International Symposium on Mixed
and Augmented Reality, 237–246, 2003.

[16] Syberfeldt, A.; Danielsson, O.; Holm, M.; Wang, L. H.
Visual assembling guidance using augmented reality.
Procedia Manufacturing Vol. 1, 98–109, 2015.

https://doi.org/10.1007/s41095-021-0266-0.
https://doi.org/10.1007/s41095-021-0266-0.


192 Z. Zhao, J. Wu, L. Wang

[17] Neumann, U.; Majoros, A. Cognitive, performance, and
systems issues for augmented reality applications in
manufacturing and maintenance. In: Proceedings of the
IEEE Virtual Reality Annual International Symposium,
4–11, 1998.

[18] Nassani, A.; Bai, H. D.; Lee, G.; Billinghurst, M.
Tag it!: AR annotation using wearable sensors. In:
Proceedings of the SIGGRAPH Asia 2015 Mobile
Graphics and Interactive Applications, 1–4, 2015.

[19] Biocca, F.; Tang, A.; Owen, C.; Xiao, F. Attention
funnel: Omnidirectional 3D cursor for mobile aug-
mented reality platforms. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, 1115–1122, 2006.

[20] Schwerdtfeger, B.; Reif, R.; Günthner, W. A.; Klinker,
G. Pick-by-vision: There is something to pick at the
end of the augmented tunnel. Virtual Reality Vol. 15,
Nos. 2–3, 213–223, 2011.

[21] Kasprzak, S.; Komninos, A.; Barrie, P. Feature-
based indoor navigation using augmented reality. In:
Proceedings of the 9th International Conference on
Intelligent Environments, 100–107, 2013.

[22] Alnabhan, A.; Tomaszewski, B. INSAR: Indoor
navigation system using augmented reality. In:
Proceedings of the 6th ACM SIGSPATIAL
International Workshop on Indoor Spatial Awareness,
36–43, 2014.

[23] Mulloni, A.; Seichter, H.; Schmalstieg, D. Handheld
augmented reality indoor navigation with activity-
based instructions. In: Proceedings of the 13th
International Conference on Human Computer
Interaction with Mobile Devices and Services, 211–220,
2011.

[24] Kim, J.; Jun, H. Vision-based location positioning
using augmented reality for indoor navigation. IEEE
Transactions on Consumer Electronics Vol. 54, No. 3,
954–962, 2008.

[25] Rehman, U.; Cao, S. Augmented-reality-based indoor
navigation: A comparative analysis of handheld devices
versus google glass. IEEE Transactions on Human-
Machine Systems Vol. 47, No. 1, 140–151, 2017.

[26] Subakti, H.; Jiang, J. R. A marker-based cyber-
physical augmented-reality indoor guidance system
for smart campuses. In: Proceedings of the
IEEE 18th International Conference on High
Performance Computing and Communications; IEEE
14th International Conference on Smart City; IEEE 2nd
International Conference on Data Science and Systems,
1373–1379, 2016.

[27] Van Diggelen, F. S. T. A-GPS: Assisted GPS, GNSS,
and SBAS. Artech House, 2009.

[28] Want, R.; Hopper, A.; Falcão, V.; Gibbons, J. The
active badge location system. ACM Transactions on
Information Systems Vol. 10, No. 1, 91–102, 1992.

[29] Fukuju, Y.; Minami, M.; Morikawa, H.; Aoyama, T.
DOLPHIN: An autonomous indoor positioning system
in ubiquitous computing environment. In: Proceedings
IEEE Workshop on Software Technologies for Future
Embedded Systems, 53–56, 2003.

[30] Minami, M.; Fukuju, Y.; Hirasawa, K.; Yokoyama,
S.; Mizumachi, M.; Morikawa, H.; Aoyama, T.
DOLPHIN: A practical approach for implementing a
fully distributed indoor ultrasonic positioning system.
In: UbiComp 2004: Ubiquitous Computing. Lecture
Notes in Computer Science, Vol. 3205. Davies, N.;
Mynatt, E. D.; Siio, I. Eds. Springer Berlin Heidelberg,
347–365, 2004.

[31] Liu, M. Y.; Liu, K.; Yang, P. P.; Lei, X. K.; Li,
H. Bio-inspired navigation based on geomagnetic. In:
Proceedings of the IEEE International Conference on
Robotics and Biomimetics, 2339–2344, 2013.

[32] Rubino, I.; Barberis, C.; Di Chio, L.; Xhembulla, J.;
Malnati, G. Enhancing a museum mobile application
through user experience design: A comparative analysis.
Recent Advances in Electrical & Electronic Engineering
295–300, 2014.

[33] Delail, B. A.; Weruaga, L.; Zemerly, M. J. CAViAR:
Context aware visual indoor augmented reality
for a university campus. In: Proceedings of the
IEEE/WIC/ACM International Conferences on Web
Intelligence and Intelligent Agent Technology, 286–290,
2012.

[34] O’rourke, J. Art Gallery Theorems and Algorithms, Vol.
57. Oxford University Press, 1987.

[35] Zeng, R.; Wen, Y. H.; Zhao, W.; Liu, Y. J. View
planning in robot active vision: A survey of systems,
algorithms, and applications. Computational Visual
Media Vol. 6, No. 3, 225–245, 2020.

[36] Foraker, J.; Royset, J. O.; Kaminer, I. Search-trajectory
optimization: Part I, formulation and theory. Journal
of Optimization Theory and Applications Vol. 169,
No. 2, 530–549, 2016.

[37] Sato, H.; Royset, J. O. Path optimization for the
resource-constrained searcher. Naval Research Logistics
Vol. 57, No. 5, 422–440, 2010.

[38] Kratzke, T. M.; Stone, L. D.; Frost, J. R. Search and
rescue optimal planning system. In: Proceedings of the
13th International Conference on Information Fusion,
1–8, 2010.

[39] Royset, J. O.; Sato, H. Route optimization for multiple
searchers. Naval Research Logistics Vol. 57, No. 8, 701–
717, 2010.



AR assistance for efficient dynamic target search 193

[40] Koopman, B. O. Search and Screening: General
Principles with Historical Applications. Pergamon Press,
1980.

[41] Martins, G. H. A new branch-and-bound procedure
for computing optimal search paths. Technical Report.
Naval Postgraduate School Monterey CA, 1993. Available
at https://apps.dtic.mil/sti/citations/ADA265276.

[42] Lau, H.; Huang, S. D.; Dissanayake, G. Discounted
MEAN bound for the optimal searcher path problem
with non-uniform travel times. European Journal of
Operational Research Vol. 190, No. 2, 383–397, 2008.

[43] Sato, H. Path optimization for single and multiple
searchers: Models and algorithms. Technical Report.
Naval Postgraduate School Monterey CA, 2008. Available
at https://apps.dtic.mil/sti/citations/ADA488991.

[44] Morin, M.; Abi-Zeid, I.; Lang, P.; Lamontagne, L.;
Maupin, P. The optimal searcher path problem with
a visibility criterion in discrete time and space. In:
Proceedings of the 12th International Conference on
Information Fusion, 2217–2224, 2009.

[45] Peng, H.; Huo, M. L.; Liu, Z. Z.; Xu, W. Simulation
analysis of cooperative target search strategies for
multiple UAVs. In: Proceedings of the 27th Chinese
Control and Decision Conference, 4855–4859, 2015.

[46] Hu, J. W.; Xie, L. H.; Xu, J. Vision-based multi-
agent cooperative target search. In: Proceedings of the
12th International Conference on Control Automation
Robotics & Vision, 895–900, 2012.

[47] Perez-Carabaza, S.; Bermudez-Ortega, J.; Besada-
Portas, E.; Lopez-Orozco, J. A.; de la Cruz, J. M.
A multi-UAV minimum time search planner based
on ACOR. In: Proceedings of the Genetic and
Evolutionary Computation Conference, 35–42, 2017.

[48] Meng, W.; He, Z. R.; Su, R.; Yadav, P. K.; Teo, R.;
Xie, L. H. Decentralized multi-UAV flight autonomy for
moving convoys search and track. IEEE Transactions
on Control Systems Technology Vol. 25, No. 4, 1480–
1487, 2017.

[49] Hu, J. W.; Xie, L. H.; Xu, J.; Xu, Z. Multi-agent
cooperative target search. Sensors Vol. 14, No. 6, 9408–
9428, 2014.

[50] Bhattacharya, S.; Hutchinson, S. On the existence of
Nash equilibrium for a two player pursuit-evasion game
with visibility constraints. In: Algorithmic Foundation
of Robotics VIII. Springer Tracts in Advanced Robotics,
Vol. 57. Chirikjian, G. S.; Choset, H.; Morales, M.;
Murphey, T. Eds. Springer Berlin Heidelberg, 251–265,
2009.

[51] Darken, R. P.; Peterson, B. Spatial orientation,
wayfinding, and representation. In: Handbook of Virtual
Environment Technology. Stanney, K. Ed. CRC Press,
533–558, 2002.

[52] Kraus, M.; Schäfer, H.; Meschenmoser, P.; Schweitzer,
D.; Keim, D. A.; Sedlmair, M.; Fuchs, J. A
comparative study of orientation support tools in
virtual reality environments with virtual teleportation.
In: Proceedings of the IEEE International Symposium
on Mixed and Augmented Reality, 227–238, 2020.

[53] Microsoft Azure Kinect DK documentation. 2020.
Available at https://docs.microsoft.com/en-us/azure/
kinect-dk/.

[54] Cohen, J. Statistical Power Analysis for the Behavioral
Sciences. Academic Press, 2013.

[55] Sawilowsky, S. S. New effect size rules of thumb. Journal
of Modern Applied Statistical Methods Vol. 8, No. 2,
597–599, 2009.

[56] Shapiro, S. S.; Wilk, M. B. An analysis of variance test
for normality (complete samples). Biometrika Vol. 52,
Nos. 3–4, 591–611, 1965.

[57] Rey, D.; Neuhäuser, M. Wilcoxon-signed-rank test. In:
International Encyclopedia of Statistical Science. Lovric,
M. Ed. Springer Berlin Heidelberg, 1658–1659, 2011.

[58] Hart, S. G. Nasa-task load index (NASA-TLX); 20
years later. Proceedings of the Human Factors and
Ergonomics Society Annual Meeting Vol. 50, No. 9,
904–908, 2006.

[59] Huang, J. H.; Yang, S.; Zhao, Z. S.; Lai, Y. K.; Hu, S. M.
ClusterSLAM: A SLAM backend for simultaneous rigid
body clustering and motion estimation. Computational
Visual Media Vol. 7, No. 1, 87–101, 2021.

[60] He, Y. H.; Wei, X.; Hong, X. P.; Shi, W. W.; Gong,
Y. H. Multi-target multi-camera tracking by tracklet-
to-target assignment. IEEE Transactions on Image
Processing Vol. 29, 5191–5205, 2020.

[61] Li, P.; Zhang, J. B.; Zhu, Z.; Li, Y. W.; Jiang, L.;
Huang, G. State-aware re-identification feature for
multi-target multi-camera tracking. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 1506–1516, 2019.

Zixiang Zhao is an M.A. student in
the School of Computer Science and
Engineering of Beihang University. His
current research focuses on virtual reality,
augmented reality, and visualization.



194 Z. Zhao, J. Wu, L. Wang

Jian Wu is a Ph.D. student in
the School of Computer Science and
Engineering of Beihang University. His
current research focuses on virtual reality,
augmented reality, and visualization.

Lili Wang received her Ph.D. degree
from Beihang University where she
is now a professor with the School
of Computer Science and Engineering,
and a researcher with the State
Key Laboratory of Virtual Reality
Technology and Systems. Her interests
include virtual reality, augmented reality,

mixed reality, real-time rendering, and realistic rendering.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.

http://creativecommons.org/licenses/by/4.0/.
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related work
	AR guidance
	Probabilistic search

	Method
	Set up
	PGS pipeline
	Target prediction
	Probability calculation

	User study
	Outline
	Design
	Participants
	Implementation
	Environments and tasks

	Procedure
	Results
	Task performance metrics
	Perceptual metrics


	Conclusions

